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ABSTRACT 

Thr numcricnl propertirs of the  trapezoidal  implicit, the backward  implicit,  and  partly  implicit mct>hods nrr 
irlvrst8ig:Ltrtl. The  computational  stability of these  methods,  the  selective  damping of waves,  and t,he accuracy of 
t,hc prrtlictrtl wavc nrc discussed primarily for ware  equations  in  the  simple  form.  Then,  their  applicabilit8y t’o the 
intrgration of thc  primitive  equations  is  considered for a  system of linearized  equations. 

Ttw chnr:~ctrrist.ic features of four iterative  methods,  each of which  consists of a predictor and n corrrctor t,o hc 
us(d only oncr, nrr nlso described. 

1. INTRODUCTION 

Tlle  very  short,-period  oscillntions inevitably  undergone 
by any met8eorologicnl qunntity  predicted by a  system of 
primitive  equations nre principally  noise, if an  atmospheric 
model is designed so as to forecnst  a  large-scale and slowly 
moving  meteorologicnl  wnve. The noise  appenra as high- 
frequency  gravitntionnl  waves. In  this  paper  the  words 

It is necessnry to suppress  the noise.  Otherwise, an 
important meteorologicnl  wnve can  be  masked by it. 
The problem of initializntion of data  has been  st,udied to 
find a way  to  reduce  the  nmplitude of noise (e.g., Hinkel- 
m m n  [4], Phillips [7]). This  can  be  att.ained  by  an 
appropriat,e  ndjustment  between the fields of wind and 
pressure.  However, the  control of noise  which may arise 
after the initid t,ime  hns not  yet been  achieved. This 
problem  is  presumnbly  serious  when a model of the  moist 
atmosphere  is  denlt  with  or  when the influence of orography 
is t8nktn  into considerntion. Namely, if n rapidly chnnge- 
able  process  such ns the release of latent  heat  due  to 
condensation of wnter  vapor is included  without  care  in 
n prognostic equation,  the  maintained  adjust,ment  between 
t8he  two  fields will be  destroyed  and noise will be excited. 
Similarly,  t,he  mot,ion  which  is  forced by  mountains is n 
source of noise too. In  Addition, noise  will be amplified 
if t,he  procedure of numerical  inte.qntion of the  primitive 
equnt,ions does not’ satisfy  the  condition for computational 
stabilit,y. I n  t,he Cnse cf the “leapfrog”  method,  which 
is  widely used nnd is nlso cnlled the cent’ered-difference 
met,hod, this condit,ion  plnces nn upper  limit  on  the  time 
interval of the  marching process. The  time  interval  thus 
specified is very  smnll ns compared with the characteristic 
time of the met,eorologicnl wnve. 

11 graritrltionnl  wnve” will be used in  this sense. 

*On l rn re  from the Meteorological Research Institute, Tokyo, Japan. 

On t.he other  hnnd, it has been  known thnt n  stnble 
integrntion of wnve  equnt,ions  cnn  be  mnde  without  nny 
rest,riction  on  the  time  intervnl  by mnlring use of implicit 
methods  (Richtmyer [lo]). Furthermore,  it is possible 
to  establish an implicit  scheme  which  cnuses  dnmping of 
the wave. The degree of this dnmping effect differs  with 
the period of the wave,  just ns finite  differencing  in  spnce 
has  some  selective  properties  for  waves  with  different 
scales. Consequently,  the difficult,ies  nssocinted wit.11 the 
occurrence  or the growth of noise mny be  overcome to 
some  degree  with  an  implicit  method. ,Mnny implicit 
schemes  have been  discussed;  however  those tto be con- 
sidered in  this  paper  are  the relntively  simple ones. The 
purpose of this  study is to invest,ignte  t,he  numerical 
properties of these schemes  when they nre used for  inte- 
grnting the  wave  equation.  In pnrticulnr,  considerat,ion 
d l  be  given t o  how  high-frequency wnves behnve  when 
n large  time  intervnl  is  taken nnd how select,ive the 
dnmping of the wave is with period. 

The discussions in section 3 relat’ive to t,he  applicnbility 
of implicit  methods  to  the  integnt’ion of the  primitive 
equations  are  based  on a system of linenrized  equntions 
without  viscosity.  The  actunl  qundrntic  nnture of the 
equa.t.ions, from which arise  problems of nonlinenr in- 
stability (Phillips [SI) and of the  interaction between 
meteorological  wave and noise  which  reduce the nccurncy 
of the  prediction of the former  wnve, will not,  be  considered 
in  this  paper. 

A few articles  concerning the use of implicit, met(l1ods 
have  been  published  in  Russinn  journals (e.g., Tseng 
Ch’ing-ts’un [12], Bortnikov [l], Turinnslrnfi [l l]) .  The 
computational  instability of one of these  methods will be 
pointed  out. 

The implicit  methods  require  one  to  solve n non-trivinl 
equation  for  the  values a t  a new  time  level. One such 
method is an  iterative procedure  (e.g., n trapezoids1 
implicit  method  with nn iterative scheme used by Uusitnlo 
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[13] and  Teronis  [14]). GenerwllJ- speaking, tu1 it'erat'ire 
method consists of obtaining it  tentttt'ive vctlue by a pre- 
dictor and correcting it recursirel?- by zt corrector. In 
section 4, methods  in n-l-hich a corrector  is used only once 
will be presented.  These n~ethods  have  a  pr0pert.y o f  
selectil-el)- damping  the ware solutions.  One of them, 
n-hich will be referred to in  this  paper R S  the  Euler- 
bwkw-srd methucl, is being used for the  time  integration 
o f  a general circulation nlotlel at,  the  University of Cdi-  
forth,  Los Angeles. Recently,  the  integration of t.he 
primitive equations llns  been done wi t>h  t,he so-called 
improred  Euler-Cauchy  method  (Grammeltvedt [31). 
Eliilssen [2]  has described the built-in  selective damping of 
this  method. I t  should be renlarked  t'hat  this  property 
is not derived  from the finite differencing in  time,  but 
results from non-centered  finite differencing in spice. In 
this respect,  it  is different in  quality from the selective 
damping to be discussed in  this paper. 

If more than tn-o time lcvels are tlssocitited with it scheme 
o f  integration for equations o f  the first order, computtr- 
tiond modes will appear which may give rise t.0 instabili- 
ties in numerical integxtion. Some methods  can elimi- 
nate or damp  this  fictitious  node (e.g., l l i p k o d a  [6], 
Phillips [9], I d l y  [.;I,. I t  seenls that  the lewpfrog- 
trapezoidal  method discussed in section 4 is  very useful 
for suppressing it. 

2. PROPERTIES OF IMPLICIT  SCHEMES  AND  THE  LEAP- 
FROG  METHOD IN THE  TIME  INTEGRATION OF THE 

WAVE  EQUATION 

where 
~ 

v=2T/L ;=,-I. 

The  advection of the  qutlntity is accurntely  shown by 
the  right-hand side o f  (2.1). When we  use a  spectrum 
method,  in  which a mtve is represented by functions  and 11 
space derivative  is  obtained  anal?-tically, a n  est'imtttion of 
the  tldrection  is  accurate. In the following discussions, 
we assume that  the  advection  takes :in accurate rnlue, 
unless  we mention  especidly  finite differencing in  space. 
This will make  the  properties of time  int,egrntion  schemes 
clear.  Accordingly, the  results o f  the  investigations can 
he applied to  the schenles  in  which n spectrum  method, 
e.p., a Fourier  series, is adopted. If a grid  method  is used 
t o  compute the space derivatives,  the  tendency  equation 
will be changed. In case of the  centered  space differences, 
however, the change in (2.1) is  on1~- i\ modificat'ion of phase 
velocity. Therefore. we can  apply  the  results  to  be ob- 
t:tined also t.0 the schemes with  centered space differences, 
if a modification of (2.1) is  taken  into  consideration. 

TWO TIME-LEVELS SCHEME 

We consider the cases  where  tn-o time-levels, T i t ~ l d  

.+I,  me used in integrating (2.1) numerically i ~ n d  the 
scheme of computation  takes  the  form 

h r + l - h r = -  jahr+l-i ohr (2.2) 

where a ltnd p nre  coefficients at  our disposal  under tlrc 
condition a + p = v e ( l f ) .  At is the  time  int.erra1 betweer1 
two  tmime-lerels.  The so-called amplification matrix o f  
( 2 . 2 )  is I(l-i@/(l+ia)'.  Then, provided the magnitude 
of the eigenvnlue o f  the abo\-e single element, 111:ttrix is 
equnl t80  or less t ,hm one! the scheme (2.2) is coIlIl>utii- 
t,ionally st,ttble. 

Let. A = R  esp  i6 be the  eigendue. In the cnse o f  
two t,ime-levels scheme,  there is onl?- one eigenv 'l 1 uc : 
namely,  no  computational  mode arises out of tjhe prwess 
of numerical  integration. In the above expression o f  x. 
X denot,es the  amplifying  rate, n-hich is, of course. ficti- 
tious. The phase relocit- o f  the  computed physicrll nnotlr 
is -6IvAt. 

When a is zero in 1'2.2). tl, form-ard time difference sclletnr 
(1Iet.hod 0) is  obtained.  Hereafter.  an Arabic  number will 
be used to  identify ill1 explicit method  in  contrast,  to i l l )  

dphnbetic  letter for identification of an implicit8 schemr. 
The  rttlues of 6 t l n d  IT for a specified value of 0 are 

*=tan-' (-B) 

I:=(cos 6j-1 

using t#he nbo\-e 8, respectirelJ-. 
The t'rtwe of the eigenvalue in  the  conlples p1;tne as i t  

function of p is sho\vn in figure 2.1. As R is  aln--:t~-s I ~ ~ ~ . Y P I *  
than one, this explicit scheme  is absolutely  unst,ahle. I t  is 
known thctt. an explicit  scheme  is  condit,ionally stahle i f  
we use noncentered, upstre:lnl differences in  the compu- 
t,nt,ion of the  sp;\ce  derivati\-es (e.?., Richtmyer  [IO]). 1 1 1  

t.his  case, :I computation scheme takes it different f o r n l  

from ( 2 . 2 ) .  
We  shall now discuss the  properties of two implivit 

schemes for representing (2.3). 
Jfeethod A (bachrv l - l I  implieif mcfhorl)."Puttin~ $=O i t 1  

(2.2) we llnre 

hT'l"hr=";,~7+1. (2 .3)  

In  this  case, 6 and I? for a specified r d u e  of a ilre 

b=tnIl-' (-a) 

E=cos 6,  using  the above 6. 

Figure 2.2 shows the  trwe of on the complex ph11c. 
This  met,hod  is  absolutel-  stable and causes  damping o f  it 
wive. In the limit' of large ,a , ,  a n-ave nil1  be completely 
dnmped  out. I t  is also seen that,  the  phase difference o f  :i 
mttve at, two time-levels  is at most, ?r,i2, i.e.,  below one- 
fourth of w-avelengtlI in either direction. 

, ,  
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FIGI-RE 2.1.-Tracc of eigenvalue  for 
lIrt,hod 0 (forwnrd explicit 
mcat,hod). Eigenvalue, X , + i x i ,  of 
t,hc: amplification matrix (single 
clement) of h r t l -  h T =  -iphr is 
sho\vn on  t,he  complrx  plane. For 
n gircn  paramctrr 0, R represents 
t,hc magnitude of cigmvalue, Le., 
amplifying mt.e, and d is thc  phase 
;~ngle of eigenvnlue. 

I 
METHOD A 

FIGURE 2.2.-Trace of eigenvalue for 
Method A (backward  implicit 
method).  Eigenvalue of the  ampli- 
fication  matrix of (2.3) is  shown  on 
the  complex  plane. CY is a param- 
eter. In the limit of large lal, a 
wave is completely  damped out,. 

Method B (trapezoidal im.plicit method) .-This scheme is 
obt'ained by  putting p=a in (2.2)) 

hr+1-hr=-icuhr+"ia~r. (2.4) 

In  this cme, 8 is  to  be  obtained as a  solution of 

"sin  b/(l+cos 8)=a, 
and R= 1. 

The t,rnce of X is  shown in figure 2.3. This scheme  is 
neutral in the sense that  i t  neither amplifies nor  damps a 
wave. The eigenvalue  for  large la] approaches - 1. 
Thus,  t'he phase of a  wave will be  shifted  by T ,  i.e.,  half 
a  wavelength, in one time  step if la/ is  infinitely  large. 

We  shall now give  exnmples of numerical  integration 
with  the use of the  above two  implicit  methods. A system 
of equnt'ions admitt,ing  only  inertia oscillations is 

where u is nn eastward  wind  velocity, v is a northward 
wind  velocity, and .f is the Coriolis parameter.  These 
equat,ions are  rewritten in the form of (2.l), 

where 
w=u+iv. 

A tinre  integration of (2.5) was  done by  the formulas: 

35 

I c I = - - l  

METHOD B 

FIGURE 2.3.-Tracc of cigenvalnc for 
Method R (trapezoidal implicit 
method).  Eigmvalnc of the ampli- 
fication matrix of (2.4) is Rhown on 
t.he  complex  plane. a is a pnram- 
eter. An rlmplit,udr! of wavr! docs 
not  change  for  any  vnlur of a, 
since R = l  alwnys. In  thc limit, of 
large lal, a wave is shifted 1 y  half 
a wavelength. 

and 
wr+l-wT=-if At - wr+l-<f$ ?or, (Method R) 

starting  from  the  given  initial  value ?00=?1?= 1, and as- 
suming j = T / 9  (hr.-l). The period of oscillat,ion  is  t8hen 
18 hr.  Figure 2.4 shows  single-step  predict'ions of ?L for 
various  values of At. To use  long  time  steps  in  Method 
A gives  complete  damping, i.e., ul=O; while wit,ll Method 
B, u1= -u0= - 1 and 01= -uo=O. Although  there  exists 
no damping effect  in Method B, the error in the phase 
velocity will make a  prediction  meaningless if the  time 
step chosen is larger  than  about one-sixth of  a  period of 
the wave. I n  figure 2.5 are shown  predict,ions of u, in 
which Methods A, B, and explicit  leapfrog method 
(Method 1) were  repeatedly  used,  respectively,  with n 
t,ime step of one  hour.  The  damping effect in .Met,hod A 
is  clearly seen. 

The general  case of (2.2) will be referred to IW Method(;. 
Method C. (pady  implicit method) .-For convenience, 

- 2  

(2.2) is  repeated: 

hr+l-hr=-icuh41--iphr (2.2) 

In  this case  t'he real  and  imaginary  parts of the eigenvalue 
are 

X,ea~=(l-a~)/(l+~z) 

X,,,= "(a+B)/(1 Sa') 
respectively.  Accordingly, the  magnitude of X is 
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1. 

” 1 . 1  
e METHOD E w e *..r“- 

F I C ~ R E  2.4.-Single-step prediction of iuertia  oscillation  with 
various  time  interval?; (Af in hr.). 1 4  at t = A t  is plotted. 

1 

-1 

X METHOD A 
0 METHOD B 
OMETHOD 1 

- 

F I C ~ R E  2.5.”Predictio11 of inertia  owillation  with Jt=1 hr. 2 4  i* 
plotted. 

~ ~ ~ = [ ( l ~ a ~ ) ( 1 + p ” ) l ” ’ / ( 1 + f f ~ )  

The  computational  stability  condition  for (2.2) is, there- 
fore, 

ID1 I I f f !  
TTe use this  condition  in section 3 where we invesbigate 
the  computational  stability of the t’wo he-levels  inte- 
gration scheme in which  some terms of t’he  primit,ive 
equations  take implicit’ form and ot.hers take explicit 
form. 

THREE  TIME-LEVELS SCHEME 

S o w  consideration will be  given to the  three t,ime- 
levels formula of the following form 

h r + l - h r - I = -  khr+”-ighr (2.6) 

TTe do not, discuss a  general three time-levels  scheme, 
but consider only a combined  form of the  leapfrog  and 
an implicit, method.  The amplification mat’ris of the 
above  formula  is 

The eigenvalues of the  above  matrix  are  obtained  as 
solutions (see Appendix 2) of the  equat#ion 

(1+iff)X2+ipX-l=o.  (2.7) 

P = O  6 A 

3=-2 

3=2 
METHOD 1 

FKGCRE 2.6.-Trace of eigenvalue for Method 1 (leapfrog method). 
Eigenvalues of the  amplification  matrix of (2.8) are show1 on 
the  complex  plaue. 6 is a parameter.  The  right half of thc 
unit  circle corresponds  to t.he computed  phvsical  mode and the 
left half to  the  conlputational mode. If \@[<a, one of thc 
two  eigenvalues  represents  the  former  mode  and  tht.  othcr 
does the  latter  mode. If jp;>2, tn-o eigenvalues are on tht. 
axis of X,=O and  one of them is outside  the  unit circlv, i.e., 
the  scheme is computationallg  unstable. 

One of t’wo solutions applies to amplification rate and 
phase velocity of the physical  mode, and  the  other de- 
scribes t’hose of the so-called computational  mode.  (Note 
that  the amplification rate  and phase  velocity of the  true 
physical  mode  are  unity  and c ,  respectively, as defined by 
(2.1).) In  the ttnalysis of X, we will use eit’her of t’he  two 
forms: X = X , + i X i  or X= X ex7 i6. Suffix 1 or 2 nlr~y 
be  attached  to X, X or 6 to denote  the  abore-mentioned 
two  modes, if necessary. The  computational  st,ability 
condition  for  (2.6) is that  both X, and R, should  be equd 
to or less than  one. In the following, a  special case a n d  
the  general case of (2 .6 )  will be  examined separately. 

Method 1 (leapfrog method).-This scheme is obtained 
by put’tinp a=O in  (2.6): 

It is well known that, if ]gl<Z 

X,=”8!2 

a nd 

and  one of IX1,21 is larger  than one. As a consequence the 
computational  stability condition is met. if l4<2. Figure 
2.6 shows the  trace of X. The  right half of the  unit circle 
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One  of the 81,2 is out of the abo\-e  ranges if Ipl>[al. 
When a<O 

METHOD D, a > O  METHOD D, a < O  

FIGITRE 2.7.-Tracc of cigenvalue for Method D (three  time-levels, 
partly  implicit mct,hod).  Eigenvalues of the amplification 
matrix of (2.0) are  shown on the complex  plane  separately 
for the cases a>O and a<O. In  each figure, the  trace a p  
proachcs to  the  dotted line  when 8- fa. If IpI<lal, two 
cigcnvdues arc inside thc unit, circle, i.e., the scheme  is compu- 
tationally  st,ahle. 

corresponds to  the  computed  physical  mode  and  the  left 
half to  the  computational mode  when /81<2. If we  define 
b by b=181/2, amplification rates, R, and R,, and  the 
rat8io of the phase  velocity of t,he  computed  value  to 
true  one, -8,lb and -82/b ,  can  be  estimated  as a function 
of 6. These  are  illustrated  in figure 4.1. It is seen that  
the computed  physical  mode will move a little  faster  than 
the  true phpsicnl  mode. This  tendency  can  be recognized 
in figure 2.5. 

Mf+hot l  D (par&/ implicit m,ethod).-The general  case of 
(2.6) will be treated  here, 

hr+l-hr-l,-iahr+l-$~hr 

From h=R exp i8 and (2.7) we have 

R2(cos 28-a sin 28)"np  sin 8"1=0 

R2(sin 28+a  cos 28)+RP cos 8=0. 

From t8hese, n relation  involving R, 8, and a is obtained, 

R2=1/(1-a tan 8). 

As X is real, 8 is  undefined within some  ranges,  i.e. 

tm- '  -<8<? 1 and tan" -+ir<8<$ 1 if a>O 
a 2 a 

Furt.hermore, it is  seen that when a>O 

One of the 81,2 is out of the above  ranges if Ipl>lal. 
The  trace of the eigenvalues, in which the  parameter is 8, 
is shown  separately  for  the  cases a>O and a<O in  figure 
2.7. Summarizing  the  results,  we can  conclude that  both 
Rl and R2 are  smaller  than  one if Ip1<1aI; otherwise,  one 
of Rf becomes larger  than  one.  Method D is,  therefore, 
conditionally  stable. 

3. APPLICATION OF IMPLICIT  SCHEMES  FOR  EQUA- 
TIONS OF ATMOSPHERIC WAVES 

I n  this  section,  the  problem of the time  integrntion of 
the  primitive  equations  with  an  implicit scheme will bo 
considered by using the  results  obtained in the previous 
section. 

Equations (3.1), a  system of linearized perturbation 
equations,  are  derived  from  the  assumptions  that Q= 

H(y)g+ +(x)  and - (g/f)bH/d.y= U, where Q is  geopoten- 
tial, H mean  height of the  atmosphere as a function of 
y,  g acceleration of gravity, 4 perturbation of geopot,ential, 
f t'he Coriolis parameter,  and U is a constant. zonal  wind 
in t,he  x-direction  in a rectangular  system of coordinates: 

(3.1) 

*+U - = f l v - g H -  a4 at a x  

Here u and v are x and y components of the  perturbation 
wind  velocity.  Solutions of (3.1) are given by 

3 

u = Z  ut, ut=+, 
v2(U-c,) 

i = l  .P- ( U - - C , ) 2 V 2  1 
3 

i = l  
v = c  vi, V*=df 

i v  j 
f"(U--c , )*v2  

(3.2) 

where v = 2 a f L ,  L is the  wavelength, c i ( i = l ,  2 ,  3) are  the 
three  phase  velocities  and Sf are  amplitudes of three 
waves. The ct should be  obtained as root,s of the  equation 

(U-c)3-gH(U-c)+;? f' c=o.  
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(3.3) 

\\-here t=tan" [ ( -4a3, '2ib')-1]] ' / ' ,  a = - ( f 2 / v 2 ) - g H ,  b=- 
j2.C:/v2 and e,, c2,  and c3 are defined to denote t,he phase velocitJ- 
of a meteoroloyicwl wave, an eastw.ard-mo\-ing inertia- 
gravitational  (external)  wave, and n ~~-est~\-ard-moring 
one, respectirely.  Table 3.1 shows e i  and vci with U=50 
m.sec.-l,.f taken at  4.5°1atitude,ancl gH=8X104m.2sec.-2. 

Kith  the use of (3.2),  (3.1) is  rewritten as follows: 

(3.4) 
h = g  h i  

i=l J 
where h i  st8ands for any  perturbation  quantity ( u i ,  t j i ,  or 
$<), and  the subscript i corresponds to those of (3.3). 
It is seen that  the form of (3.4) is  identical  with (2.1) of 
the previous section. (3.1) can also be  written  in  the 
follov-ing symbolic form,  which will be used hereafter  for 
the sake of convenience, 

h = F , + f >  bt (3.5 

F2=the  right-hand side of (3.1). 

The problem  is, nov-, to do the time  integrat'ion of 
( 3 . 5 )  with various  methods and to examine their  character- 
istics. The names of the methods  in  the following should 
correspond to those in section 2. 

Mdh,od A-Time integration of ( 3 . 5 )  takes  the  form 

h T + ' - , $ T = l t  .F;LIT.l f .  Fi-1 (3.6) 

where T, T+ I ,  and i l f  are two time-levels and  the  interval 
between them respectively. F ; , j l  means  that. F;,? should 

- 
0 1 I I I I I 

1.0 2.0 3.0 ' b  

I I 1 I 

1.0 2.0 3.0 ' b  

-0.5 t 
- 1.oL 

FIOVRE 3.1.-The upprr figure shows amplification rate of conlpnted 
physical  mode, R,, as a function of parameter b. b = v c A l .  
The lower  figure shows the  ratio of phase velocity of coInputctl 
physical  mode  to  the  true  phase velocity ( c )  as  a  function of b. 
For  example,  suppose b = v c l t = l . 5 .  Then, if n-e w e  1Iethotl 
A ,  an  amplitude of computed wave at  a  time  lerel T +  1 is 0.55 
times  that at r ,  and a xwve move3 with  a  speed 0.66Xc. If we 
IISC IIethod R, 311 amplitude of wave does not  change  and n 
moving  speed of computed wa1-e is 0.86Xc. 

This is the  same as (2.3) with a = v c i ( a t ) .  The amplifica- 
tion  rate of hi,i.e., X,, and a measure of t'he  fictitious  change 
of phase reIocit\" are shown in figure 3.1 against. t,he 
paramet,er b = v c i ( I t ) .  From  this figure and  table 3.1, 
it is  easy to see that for a specified wavelength and At,  
damping of the  wal-e  is highly selectire for gravitational 
waves,  for  which vci is  several  times larger than for n 
low-frequenq- wave. This  is  the  merit, of this  method. 
It should  be  noted,  hon-erer,  that,  damping of the meteoro- 
logical ware is also una\-oidable,  howerer small ilt mnp 
be.  Consequently, successive use of (3.6) will at last 
cause R noticeable  darnping of the low-frequency wave. 

I -4s mentionrd before. the amplification  rate and p h a s  velocity of the computed mode 
are giren by RI and -3t/w(A/) reapectirel:.. "here RI and 81 are the magnitude and  phwe 
angle of the  eigenvalue for an amplification  matriy of (3.7). Aceordingl~-, --SJue,(l/)= 
-81 /b  is the  ratio of ph:w \-?lacit:- of the computed value to  the  true phase relocily. 
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As for the error in  phnse  velocity, it is  large  when b is 
large. 

This is equivalent  to  Method C in section 2 .  From 
( 2 . 2 )  and (3.11) it follows t'hat 

Aldhorl 23.-Time integration of (3.5) takes  t'he  form 

h'+"-hl=2 (F;+'+fl)+, (Fl+l+zq) .  (3.8) At  At 

The form of (3.4) corresponding t,o (3.8) is 

which is equirnlent  to ( 2 . 4 )  with a = v c f ( A t ) / 2 = b / 2 .  
In  this  wse,  too,  t'he nmplificat,ion rate  and  ratio of the 
phase velocit,y of the  computed h, t'o the  true  one  are 
estimnted  and  are  shown  in figure 3.1. This  method is 
neutrd for nny value of b .  Therefore,  amplitudes of 
both nleteorologicnl and  gravitntional  wares  are to be 
conserved, nlt8hough very smnll  amplification or damping 
of wnves may  be  inevitable in prnc,tice because of round- 
off error in t'he  numerical comput.nt,ion and  some  error 
in  obtaining h r + l  ns a solution of (3.8). As for  the  error 
in phwe velocit,Ir, those of graritat8ional  wn,res  are  much 
larger  t'han  thnt of t,he meteorological  wave. As a 
consequence, it mny  be  concluded that, if we are  not 
concerned wit,h predicted  phases of gravitational  waves, 
we c t ~ n  mnke a time  step  in (3.8) somewhat  larger  than 
whlit is usually required  in the explicit integrat,ion of 
the  primit8ire equat,ions. It seems desirable  for  users 
of this nnet.hod t80 apply i t  nfter  gravitational  waves nre 
mostlJ- filt,ered by other  met'hods (such as  method A or 
filtering initinlizntion).  This is part'icularly  important 
when H system of nonlinenr  equat,ions is t,reated,  where 
the  three  wares nre 110 longer independent of each  other. 

M ~ f h o t r !  C.-Tseng Ch'ing-t,s'un [12] formulated  a 
scheme o f  time int,egrntion of t,he primit,ire  equation  in 
wlnicl~ the linenr t'ernns of t'he  equations were written  with 
avenlge d u e s  nt, two time-levels and  the nonlinear 
term ruld &term were to be ernluated  explicitly by using 
d u e s  only n t  t'he time-level T. His  method  was  used 
with some chnnges by Bort,nikov [I], with  a  grid  size of 
300 kin. rmd t,ime increment of 3 hr., which is very  large 
connpllred to  the rnt'io of space  increment to phase  velocity 
of prttvitationnl waves. It should  be  not,ed that a  spatial 
smoothing wns mnde of some  terms a t  ench step. 

Applying  Tseng's  idea to (3.5) we hare 

Hence n corresponding  formula  for  ench  wnve  is  derived, 

(3.11) 

(3.12) 

For the meteorological  wave  nnd  one of t,he two gravita- 
tional  waves, 1 / 3 1  becomes larger  than la[, and 1/3l<lal 
holds only for  t,he  ot,her  gravitat,ional  wave. Accordingly, 
the discussion in  t8he  previous sect'ion suggest<s t'hnt t'lne 
former  two  waves will be amplified while damping is 
to  be  expected  for  only  one  wave. 

If we also use finit,e difference represent'ation for spnce 
differentiation  in  t,he beginning  p8rt.s of this sect,ion, 
(3.1) through (3.5) are modified to some extent. Some 
considerations  concerning  t'hese nre given in Appendix 1. 
I n  order to discuss  fairly  Tseng's  method we should  use 
these modified forms. As a result we  will hnve different 
forms of a and /3 in (3.12). However, t'he modificnt'ions 
of a and /3 may  be  small  except for short,  waves  wit'h  the 
wave1engt.h of several  grids.  Such a scheme is not really 
comput,ationally  stable.  This inst.nhilitty cnnnot he 
eliminated by reducing a time  interval. 

Method  I.-The centered  time difference srhrrne is the 
one  most  widely used at present. It,s form and cor- 
responding  formula  for  each  mode of waves  nre, 

h+'"hl-" -2 * At(F;+Fg) (8.18) 

h;+'-6"=-i2vci(At)h;  (3.14) 

respect,ively.  Some  characterist,ics of t'his nlet,hod are 
illust,rated  in figure 4.1. I n  case of (3.14), a pnrnmct,er 
b in  t,he  figure is equal to Ivcf(At) I. Comput'ntional 
stability  requires  that 1vcf(At)1<1. Wit8h  the use of 
typical  value of vci in table 3.1, the  maximum nllownhle 
value of At is estimat#ed  and list,ed in table 3.2 as n funct,ion 
of the shortest wavelength to be  t,reated. When  one 
uses a funct'ional  form  in  representing t.hc distribut,ion 
of quantities  and  deduces Fl and F2 in (3.13) by analytical 
computations, e.g., the use of Fourier  series or a  spherical 
harmonics eqansion  method, t'hen At should b e  de- 
t,ermined by  the  smallest  scale  one  t'rents. Or, alter- 
natively, if the  time int.erva1 is fixed t,o some vnlue, nll 

TABLE 3.2-The shortest  wavelength  to be treated ( L )  and  mazimum 

stability  condition for Alethod 1 .  I t   i s  aaslrmed  that n w w e  i s  
value of the time  increment ( A t )  which satisjirs the  compulnlionnl 

treated analytically,  i.e., a spectrum method i 8  ~rnrd.  
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waves shorter  than  a  critical  wavelength  should be 
truncated from the  functional  form. 

The  most  troublesome deficiency in  this  method  is  t'he 
occurrence of the  computational  mode. If the  amplitude 
oi  t,his mode becomes large it.  is  meaningless t.0 continue 
t'he  time  integration. 

Method D.-This method  is  w-itten a.s folloms: 

h"l-h'-'=2.~tF;+2.i\tF;+l (3.15) 

Sanlely,  the  advection  term  is  estimated  esplicit.ly  and 
the  other  terms  implicitly.  The  corresponding  formula  for 
each  mode is 

h : " " h ; " = - 2 i v ( c j " C ) .  ( A t ) h ; " - 2 i v C . ( A t ) h ;  (3.16) 

This  is  identical  with (2.6) if we put, 

cy=2v(ci-"). ( A t )  

/3=2vc. (At)  
(3.17) 

If \{-e suppose ci= C in (3.16), it. t'wkes t'he  form of (3.14). 
T f  we neglect' the second term  on  the  right  hand  side of 
(3.16), assuming that !ei'>> C, then we hare  a form  similar 
to (3.7). Hence  this  method looks farorable  from  t'he 
viewpoint. of effective damping of gra.vit8a.tional  wares. 
Strictly  speaking,  howerer,  this  method  is  not  computa- 
tionally stable.  This will be  explained as follows. The 
conclusion from the pre\-ious section was t.hat.  t'he condi- 
tion of computational  stability of (3.16) is IcyI>I@I. I n  
the case of a meteorolo~cal wave, cy takes  a  small  and 
non-zero value  and  this  condition  cannot  be  satisfied. 
On  the  other  hand for praritational  wares, la1 is  much 

larger  t'han 101, a.nd those wares will be  damped. Con- 
sequently,  this  marching scheme cannot,  be used for n 
long-range  t,ime  integration. 

However,  since  the amplification rate of the meteorolog- 
ical  wave  is  very s n d ?  this  method  may  be used  in short- 
range integr>ltions. A test  computation of this  kind n-as 

attempt.ec1 b?- using a simple  linearized  model. The 
model  adopted  is  the same as (3.1), G=50 m.sec.". j is 
t.nken at, 45O latitude,  and gH=8X104 rn.%ec.-?. The 
wavelength of the  sinusoidal n-ave \re  treat,ed  is 4500 krn. 
To give the  initial  rnlues of v ,  and 4, S l = l O O O  gpm., 
S2=50 gpm.  and S3=50 gpm. were taken  in (3.2). Then, 
computations were repeated  with A t = l  hr.  by  the scheme 
(3.15), were h stands  for , a ,  r ,  and 4. I n  computing 
@ + I ,  we made a slight. change  in the scheme. Sulnely, 
ur was used instead of rr+I for enluating  the first term on 
the  right,  hand  side of the  third  equation of (3.1). ?'hen 
substituting ur+I in  the  third  equation from the first, 
eyuat'ion,  in which c ~ + l  \ws substituted  from  the second 
equation,  a one-dinlensional  Helmholtz-type equation for 
@+l was obtained. I n  our teFt. a finite difference compu- 
tation  with a 300 km. grid was used and a Helmholtz-type 
equation \\-as solved by  matrix  inversion. TTith the 
solut.ion of e+', both ur+I and cr+' were easil>- computed. 
In  this wa?- cdculations were continued  up  to fire  chys, 
i.e., 120 time  steps.  In figure 3.2 the values of 4 :1nt l  

bu/dx a t  x=O are  plotted  together  nith  the  true ~ r i a t i o ~ ~ .  
Effective  damping of graritational  waves  is clearly seen. 
Changes  in  nmplitutle of the meteorological nxve  are 
negligible so far a s  this  esnmple  is concerned. A rough 
estimate for our test case shom-s that  the amplification 
rtltes for the meteorological n--n\-e is 1+0(10-3) i~n(l  
t,hose, for gra\-itational \\-ares are 0.6 or thereabout. 

0 1 2 3 4 5 
DAYS 

FIGLXE 3.2.-Prediction of ci and &(,Qx with a system of equations  (3.1).  Method D nas  used with A t = l  h-.  Time variation of 9 and 
du/& at r = O  is show1 (true  value is shown by continuous  line and computed  value by asterisks). 
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4. ITERATIVE  METHOD 

To adopt  an  implicit scheme  in the  time  integration of 
(3 .1)  requires  solving  some  equntions  involving  values a t  
a t'ime-level  in  advance. In  order  to  avoid  this  process, 
we cnn use  some  guess  in  evnlunt,ing implicit  terms  in  t'he 
equation.  This  idea  mnkes a computation  scheme 
effectively  explicit and similnr to  the so-called predictor- 
correct,or  method. 

We shall agnin write (3.1) in  the  symbolic  form: 
bh/dt=I", where F is equnl to  the  right  hand  side of (3 .5) .  
ah@= --iucihf(i=1,2,R) is an  equation  for  any com- 
ponent wLve which  moves independently of the  other  two 
waves. This is equivalent  t'o (3.4).  Then, it is not diffi- 
cult' t'o obtain a formuln in which h;+' is  written  explicitly 
in terms of hT nnd A,;", for  each  scheme of iteration. I n  
the following the  computation  scheme  written  in  symbolic 
form and the  corresponding  formula  for a component 
ware nre given  for  four  met'hods  (where h* is a vnlue to  be 
estimat,etl at  the first step nnd h**, if necessnry,  is a t   the  
second ; F* and F** show  values of F which are  evaluated 
bJ- using h* and h**, respect'ively; by definition, b is  equal 
to v c , ( A t ) )  : 

Mdlr.od 2-(Eulsr-backward  iteration): 

h*-h,r=At.F (Euler  method) 

h:+'-hr=At.P (backward  correction) (4 .1)  

hi+'=(l--J-- lb-b')h;   (4 .2)  

34dhod S-(Modi$d Eulw-backward  iteration): 

h r+l-hr=At.p* (backward  correction) (4 .3)  

-lldh.od 4-((leapjrog-traprzoidal iteration): 

h* -h , r - '=2 .~ tF  (leapfrog  method) 

hrf'--h7=At.*(F*+F) (trapezodial  correction) 
(4.5) 

&&hod 5-(1~apjrog-ba,ckward  .iteration): 

h*-h"'=2*AtF (leapfrog  method) 

hT+l-hr=At. F* (backward  correction) 
(4.7) 

&+'=(1-2b2)h;-JTbh;- '   (4  .SI 

The  characteristic  qualities of ench  method  are  revealed by 
t'he  eigenvalues of the amplification  matrices  for (4 .2) ,  
(4 .4) ,   (4 .6) ,  and (4.8). In  the cnse of methods 2 and 3, 
t,here  exists  only  one  computed  mode for  ench of the 
three  component  waves, i.e., the computed  physicd mode 
which  will  be  denoted  by suffix 1 herenfter.  While  with 
met,hods 4 and 5 we have  another  mode, i.e.,  t,he  com- 
putntionnl  mode  to  be  identified  by suffix 2. From  the 
eigenvalues,  estimates nre made of t,he  amplification rate 
of ench mode  and  the  ratio of  phase  velocit,y of t8he com- 
puted  mode  to  the  phase velocity to he  derived  from a 
parnmet,er b .  The  latter one  is  equnl  t'o  t'he  nnnlgticnl 
solut.ion (3 .3 ) ,  if comput.ation of J' is mnde  annlyt.icnlly 
with  respect  to  space. If F is  est,imntetl by centered 
spnce  difference methods b is  equal  to vc;(At)  where cl' is 11 
phnse  velocity modified due  t80  taking finite  differences 
mit'h  respect to spnce. The  ratio of c: t,o c f  is given 
together  with vc; in  Appendix 1 for  some cases. Hence, if 
finit,e  difference methods  are used  for  bot'h spr~cc  and  t>ime, 
( - s / b ) X ( c ; / c i )  will yield the rnt,io of the phnse  velocit,y 
of t,he  comput,ed  value  to  t'he  t.rue phnse  velocity.  Figure 
4.1 shows  how R1, Rz, --ts,/b, and -&/b  or -(8,+.rr)/h 
depend  on b. It is suggested by figure 4.1 and  tables A S  
nnd A.2 in  Appendix 1 that  a fictit'ious  ncceleration of 
the  physical  mode  by  Methods 1 ,  2,  3, nnd 5 might  be 
compensated  or  even  overcompensated  by a fictitJious 
retardation of the  wave as a result of finite  differencing 
in  space. 

The  condition  for  comput'ntionnl  stnbilitg is Ibl<l.o 
for  Method 2, Ibl<,h for Methods 3 tlnd 4 ,  and Ibl< 
about 0.8 for  Met'hod 5 .  Consequently,  comparing wit,h 
t'he  criterion  for  Method 1 ,  we cnnnot  get t,ime  economy 
in  computation  since  iternt'ions nre required. If 
b=vct.(At), i.e.,  when F is comput,ed  nnalyt,icnlly, t8he 
above  criterion gives a relation bet'ween At and  t'he 
shortest  wavelength we can  treat,, ns shown  already  in 
t'nble 3.2.  When  an  estimate of F is made  by  centered 
spnce  differences,  i.e., in  t'he cnse of b=vcf'.(At), t'hc 
maximum  value of vcl', which  is  usunlly n funct,ion of 
grid  size  nnd  also  depends  on the finite  difference  scheme, 
determines  the  maximum  time  intervnl.  For example, 
consider the case  given  in  Appendix 1 nnd nssume tlmt 
Ivcf'. (At)1<1 is a stability  condition.  Then, t8he mnximum 
tolerable  value of At for a grid size of 250 km. is 740 sec. 
or 560 sec., depending  on  whether  t'he  three-point  method 
or  five-point  method  is  used  in  estimnting  the horizontnl 
gradient of a  scalar field quantity. It is 1470 sec. or 
1110  sec.  for a 500-km. grid and 2820 see. or 2170 sec. 
for a 1000-km. grid. 

Figure 4.1 shows that  the selective  dnmping  for  gravi- 
tational  waves  can  be  made  the  largest by Method 3. 
It is characteristic of Methods 4 and 5 that  they  result 
in a high  rate of damping of the  computational  mode, 
especially that corresponding to  the meteorological  wave. 
Only  Method 1 is neutral, provided the  stability  condition 
is  satisfied.  Consequently, i t  seems a good  design to 11sc 
Method 1 at  most  time  steps  but t.o ut.ilize  some  kind of 



42 MONTHLY  WEATHER  REVIEW Vol.  9 3 ,  No. 1 

R l  / i 
I 

0.1 4 -- 
5 ............. 

0.90 ' ' ' I ,  B I , I n  b 
0.5 0.0 1.0 C! 1.5 

METHOD 
1 -.-.- 

0.90 - 0.5 - 2- 

4 " 
3 "" 

5 ............ 
0.85 ' ' ' I I I 1 I I , 1 , - 4  

0.0 - 0.5 1.0 /' 1.5 

- 0.5 - 

- 1.0- 

r: - 1.5- 

b 

METHOD 
1 

- 10 

- O I  

-1.0 -_ -_ '. -1.5 

-2.0 

FIGURE 4.1.-;implificatior1 rate of colnputed  physical  mode (t.he upper left figure) and  that of conlpntntional mode (the  upper right f ig~~rc i  
are shon-n against  parameter b. b=vcAt,  if a spectrum  method is used in treating a wave. When a centered difference grid  method i9 

used, b=vc'>t .  (vc : t n d  vc' nre listed in tables 3.1, -1.1, and -4.2.) The lower left figure shows  ratio of phase  velocity of colllpr1tc.d 
physical mode to c (or e ' ,  if the grid method is used). Ratio of phase velocity of computational mode to c (or c ' )  is shon-n in the l o w r  
right figure. In three figures;, \-crticnl  scale is changed at b=0.4 .  Suppose  that b=O.5 and l le thod 4 is used. Then, an  xmplitntlrl 
of computed physic:d mode at a  tinlc level T +  1 is 0.99 times that at  T. It moves  with :I speed 0.99Xc, if a spectrum  method is ~ s ( d ,  
or with a speed 0.99Xc', if :I cmrterrd difference grid method is used. An amplitude of computational mode a t  T +  1 is 0.25 times th:rt 
at T. I ts  moving speed is 2.15Xc or 2.15Xc'. 

iterative  methods  intermittently.  In  doing so, the selcc- 
1.0 ", tion  and  combination of appropriate  iteratire  methotls 1 . - . - . - . . 

3""" 
2- / ,' has t80  be  based  upon  their  particular  properties. To use 

............... for some  purposes, since the effect of damping of the n-wve 
nn iterative  scheme a t  every  step may not  be  suitilhle 

will accumulate  with  time. For example, let us nss;111llc 
a wave of length 4000 km.  and phase velocit,g 15 111. sec." 
Then At=20 min.  makes b approximat'elv 0.028. The 
amplification  rat,e of SIethod 2 for this  value of b is 

nn amplitude of the wn1-e will be  decreased by 2.8 percent 
in one day (72 steps),  resulting  in  the decrease of kinetic 
energy of dist.urbance b:- 5.5 percent. 

0 

.......... 

-.-_ ",& 0.99961. Therefore,  with  the  exclusire use of Method 2, 
-1.0 '. .._. / 

FIGL-RE 4.2.-Prediction of inertia oscillation by iterative  methods, 
n-ith A t = l  hr. 11 is plottcd. 111 = u O = 1  x,.as for As a test, of the  iteratire methods,  the different.izi1 
1Iethods 1, 4, and 5. equa.tion  governing inertia oscillation was integrated 
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TARLE 5.1.--Svmmary of the properties of the methods  studied. I n  "difference  equation", F I  and Fz represent  nonlinear  and  linear  terms, 
respectit~ely,  and F = F I + F z .  "-\'umber of time levels" means  what is associated  with  each  marching  step. I n  "computational  stability", 
h = v c A t  i f  a spectrum method is used i n  treating a wave.  b=vc'At, if a centered  difference  grid  method is  used. I n  "phy.vical  mode", 
retardation or ncceleration  means a fictitious  change of phase  velocity  resulted  only from finite  differencing in   t ime.  

Physical  Mode 
hlrthocl Dlffcrence Equation  Computational  Stnhility 

Number Computatlonal Mode 

Amplitude Phase Amplltudn 
" 

- None 

None 

"_ A Imckward I hr+l-hr-AfF*l I 2 1 Absolutely  stable Retardation 

Lfttle retardntlon 

~~ ~~~~ ~ 

- Highly  selective  damping 

No change 1% trnprzoidal ,+*l-,+-I-A! (F*l+Fr)  2 2 Absolutely  stable 
_____" - 
C rGnrtly h**r-h*-Al~l;.t;i-(Fr.+I+F,r) cal wave  and  one  grnrity 2 

A1 Unstable for meteorolod- 

wave 

None 

" 

Dmping  Damping of vav i ty  wave 
and weak smplif:dne of 
meteorolo@cal  wave 

D psrlly (Very weak)  ocstahle  for 3 ~ * + " ~ * - ~ A L F I F * + ~ S I F * * ~  
mcteorologlcnl  wnve 

0 forward 

Conditionally  stable 3 h*l-h--I-2AfF* 1 !carfrog (centered) 

h*I-hv-AtF' 
___- 

2 Unstable 

@<I) 

-!: None 

No change 

Moderately  selective 
damnine 

Modcratr acceleration 

Large acceleration 

No clinnge 

None 2 Eulrr-backward h*-h'-AtF' 
__- 

h*l-h*-ALP 

Highly  wlective  damping Moderate  amlerntlon None 

Little  damping Little error 

Moderately  selectire 
damping 

Moderate acceleration 

The equttt'ion, for which the  iterative  met,hods were 
applied, is t,he snme as (2.5). j=?r/9 (hr.-I) was  assumed. 
Hence. the period of oscillat,ion is 18 hr. As a  starting 
vtduc, wo=vo=l wns given for Methods 2 and 3. For 
Methods 1, 4, and 5 ,  i t  is also necessary to give the  value 
of w nt. tt t'ime-level nearest  to  the  initial, i.e., w1 or w-l, 
t.o sttwt, t,he calculntion. I I  we est.imate w1 from wo by a 
modifid Euler  method  which we used to  start  the calcula- 
t'ion by Method 1 in figure 2.5, we cannot  detect  the 
esist'enrc of comput,at,ional  mode. In  order  to force a 
large init'ial amp1it)ude of the  computational  mode  the 
inteprtbtions with h le t 'hds  1, 4, and 5 were  begun  with 
w' =7c0. Figure 4.2 shows the predicbions of u in  t,he case 
of Af  = 1 hr. For t.his case we have b=2?rm (At)/(period)= 
0.35. On the  ot,her  hnnd, t,he ordinate  values  against  this 
vnlue o f  b in figure 4.1 suggest  damping of the physical 
mode o f  oscillation by  hlet'hods 2, 3, and 5 ,  the consider- 
able drmping of the  comput'ationd  mode  by  Met,hod  4 
(S2 percent a t  each step)  and  by  Method 5 (63 percent), 
the  conservation of both modes by ,Method 1, and  the 
fictitious increase of phase  velocity by  Method 2. I t  is 
seen tl1st8 t,he features of the  curves  in figure 4.2 are  t,he 
stme with  these suggest'ions. The predictions  made  with 
Af=2 hr., for which the  corresponding  value of b is 0.70, 
showed t,he fast  damping of the  computational  mode by 
Method 4 and slow damping  by  Method 5.  In  case of 
At=2 .7  hr., for which  b=0.94, Method 2 yielded  a  very 
slon- dnlnping of the  physical  mode  and a large  fictitious 
decrense in period of oscillat'ion; Method 3 rapidly  damped 
the oscillnt,ion; l iethod 4 damped  t'he  computational  mode; 

and  the  comput,ation  by  Met.hod 5 became unstable. All 
of these coincide quite well with what we observed in 
figure 4.1. 

5. SUMMARY 

The  main  properties of t,he  met,hods  considered in 
sections 2 to 4 are  shown  in  t,able 5.1, 

The properties of Met'hod A (two time-levels, backward 
implicit  method),  Method B (two time-levels, t8rapezoidal 
implicit  method), ,Method C (two t,ime-levels, pnrt.ly 
implicit  met'hod),  and  Method 1 (three t,ime-levels, 
leapfrog  method)  have  been discussed so fnr, more or less. 
They  are confirmed  in  section 2, where  the chnract,erist'ics 
of these  met,hods  in  case of wave  equation  in  simple form 
are  described. In  section 3, we consider these met,hods 
especially  from the viewpoint of t'heir npp1icahilit.y to t,he 
int.egration of the  primitive  equations. 

Methods A and B are  comput8ationnlly absolut.ely 
stable. In   t he  use of t'hese  met,hods,  the amount, of 
computation  required  to  solve  the non-t,rivinl equations 
for the  quantities at a new t8ime-level and  t,he decren,se 
of accuracy of the predicted low  frequency  wnve  should 
be  weighed  against the advant,nge of a long  time  int.erval 
in a marching process. The  amplitude of any  ware will 
not  be  changed  with  Method B. hlet,hod A result8s in R 

damping  which  increases  with  the  increasing vnlue of t,he 
paramet,er b. (b=vcAt if a spectrum m e h d  is used in 
treating a ware.  When we use a cent,ered difference grid 
method, b=vc'At where c' is a modified phwe relocity.) 
The  property of selective  damping of ware is useful for 
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reducing the noise in  the  solution of t.he  primit’ive equa- 
tions. 

Jlet’hod 1 has no damping effect for either  physical or 
cornputat’ional  modes. 

The  characteristics of Method D (t.hree  time-levels 
partly implicit’ method)  are  made  dear  in  sections 2 and  3. 
I t  yields an effective clamping of pravitational waves. 
I t  is  because of this  that, despit’e a slight computat’ionrll 
instabilit- of this  method, we used  it, in secbion 3. Jlethod 
D may  be used with a relativel- long time  interval, say 
one hour,  for the  short-range  integration of the  primitive 
equation. 

The numerical properties of JIethods 2 ,  3, 4, and 5 
(iterative  methods)  are  inrestigated  in  section 4 .  The 
condition of conlputational  stability for Methods 3 and 4 
is somewhat  weak as compared  with  Met’hods 1, 2 ,  and 5 .  
By utilizing the  characteristic  features of Methods  1. 3, 
and 4, we may  synthesize a xhenne more desirable  thnn 
any of its  parts. Swmel?-, d t e r  using Jlet’hod 1, l le thod 
4 is employed for a few steps t o  eliminate  the computt1- 
tional mode, then  Method 3  is  applied to  damp  the noise 
before returning t o  l l e thod  1:  and so on. 

The  solutions of (3.1-A) are given b -  

where p is the  integer  and v=2r/(nA), where n (integer 
2 2 )  is a number of grid points within a wavelength,  i.e., 
in  ot,her words, n 1  means JYru1-e length. V’ may b. written 
in  terms of n and A, 

APPENDIX 1.-FICTITIOUS C H A N G E  OF THE  PHASE 
VELOCITY  DUE  TO  THE USE OF CENTERED  SPACE VI=- sln- 

1 . 2n 
A n  for the three-point  method 

DIFFERENCES 

z ( r -1 ) - z ( x -1 )  .sin V A  
We  shall  call  these phase velocities modified phase veloci- 
ties. I t  is seen, from the comparison of the  above equll- 
tion  wit’h the corresponding one in section 3, that e’ 

where A is  the space-increnlent. The sinlilttr one for a v, 
is t’he  same wit.11 c in  the case m-here Uand gH are nlodifietl 

five-point method  is gH, respectirely. As V’/V is nearly  equd 

2A 
~ 

A 4x1,  

s . , - ( ~ + A ) - - s . E ~ J - ~ ) - - ( s + ~ A ) + z ( ~ - - ~ A )  
12.1 

= 1  
. (sin vA) . (4-cos vA) 

3A 2 ( 2 )  

The above  two finite difference formulas  t,ake a conlmon 
form, namely &jb.r= iv’z instead of analytical vdue  ivz. 

Sow, with the use of the  ahore expression for a Ilori- 
zontal gradient and an a.ssumption of an  equal wave 
length  for u, r, and c$, (3.1) is modified RS follows: 

~ 

to one for large n, the  fictitious change of phase velocities 
due  to  space  finite differencing is snlall for relat’irely  long 
waves. On  the  contrary, V‘]V is  smaller than  about 0.1) 
for R 5 8  (in  the case of the three-point method) or for 
n 1 5  (five-point method),  and  an  error  in  the p h ~ e  
ve1ocit.y of waves  corresponding to  these n becomes large. 
An  important  formula which is derived  from (3.1 - A )  
and (3.2-A) and is  equiralent  to (3.4) is 

--fiV’Chj=-i(vc:-v’U)h.,. bh  
bt (3.4-A) 
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TABLE A.I.-Ratio  (c,'/ci) of the modified  phase  velocity  (c,') to the 
analytical  phase  velocity  (ci)  and  vci', i n  case of a  three-point 
$nile  difference scheme with  a  grid  size of ,950, 600, and 1000 k m .  
n i s  the number 0.f grid points  within a wavelength, L e . ,  n X  (grid 
size)  =wavelength.  Assumed  values of U, g l i ,  f are the same  as 
those shown i n  table 3.1. 

TABLE A.a.-Ratio (c'Jci) of the modified  phase velocity (c'i) to the 
analytical  phase veZocity (c;) and d i t  i n  the cade 0.f n $oe-point 
finite  difference  scheme  with a grid  size of 260, 600, and 1000 km.. 
Refer to  table A.1 for further  explanation. 

(sec -1 )  (sec-1) (sec.-l) 
"el' "Ci luc3'l 

1.713 10-4 1.159 10-3 8.110 
1. BRA 1 . 3 X  9.352 
l.W.5 1.2i2 8.898 
1. i l 3  1. I59 8. 110 
1. 543 1. MX 7. 331 
l.:i!ll 9.4!12 10-4 6.640 
1. 2!io 8. Cd:i 6. 046 
1.14% 7.91% 5.540 
5.6% 10-S 4 . W i  3.M11 
2.3:<4 2. 3!l% 1. ( i !I% 

_ _ _ _ _ _ _ _  1.028 10-4 1.028 10-4 

" 

m-km. grid 
2 0.0 2 5  

61. 8 6 2  1 
3. 5 

84.4 
6 2  1 

84.9 
93.0 93. 2 

84.9 

96.4 
93. 2 

98. 0 
!Mi 5 

98. 1 
9% 8 

!I< .  1 
94. 8 ! N .  X 

99.2 !I!#. 3 
9% 5 w. 5 

!l!l. 3 
!l!l. 5 

100. 0 1W. 0 Illl). 0 
100. 0 1111l. 0 IIW). 0 

wh 5 

3 
4 
5 
6 

8 
7 

9 
10 

40 
20 

250-km. grid 
2 
3 
4 

ti 
5 

R 
i 

9 

20 
10 

4 0  

41.0 
fii. 4 

n2.4 
i5 .  4 

h!i. X 
h!l. X 
111. X 
!I:{. 3 
(1% 1 
!ll,l. 4 

n. n 
41. 5 
2.5 

c;3. x 
, ,,. X 
n~ .  n 
xi. 2 

-r  

!Ill, 2 
!r2. 2 
! I : { .  i 
!I% 5 
! l ! l .  i 

41. 5 
3. 5 

8 2  R 
7.5. 8 

X i .  2 
!W. 2 
!r2. 2 
!I :< .  i 
!I*. 5 
!l!l. i 

m. 8 

W k m ,  grid 
2 
3 
4 
5 

6 A 
9 

10 

40 
20 

61. 3 
0.0 

84.4 
92. 8 
96. 3 
Yi. 9 
98. 7 
99. 2 

100.0 
99. 4 

1011. 0 

62.4 
4.9 

85. 1 
93. 3 
96. 6 

!I% 9 
!IS. 1 

99. 3 

ltl!). 0 
!4!l. 5 

100. 0 

62. 4 
7. 0 

8.5. 1 
!Ki. 3 
!I! ; .  6 
!I% 1 
!I% 9 
!l!l. 3 

IIIII. 0 
!1!1. 5 

m .  o 

30. 3 
0.0 

I??. 5 

X I .  (i 
74. 5 

XI;. I) 
X!l. 0 
! # I .  0 
!I?. 5 
!li. 5 
! l ! k  1 

42. 1 
4. 9 

fd. 3 

Ki. :3 
, !h 3 

h i .  6 

!I?, F, 
!H. I 
(1% 8 
!l',l. x 

-. 

!HI. (; 

42. 1 
7.0 

xi. 3 
71;. 3 

X i .  7 
!HI. 6 
!U. 6 
!H. 1 
!IN. 8 
!l!l. !I 

rd. 3 
8.295 10-3 5.890 4.121 
9. RXO 6 ilifi 4.734 

_...____ 1.0% 10-4 I. 0% 10-4 

9. 175 6 44.5 4.510 
8. 215 5.R!U 4. 121 
i. 41; 5. 342 3. 7:39 
6. fii3 4. X59 3. 4lx) 
5.!l,Y? 4.445 3.112 
5. :vi5 4. O ! l 4  2. 86i  
2. 2)4 2.37ti 1. 678 
R.!i15 10- 1. 551i 1. 153 

!I 
10 

4(1 
m 

1 m k m  grid 
2 
3 
4 
5 
6 
i 
8 
9 

20 
10 

59.3 
0.0 

83.2 
92.0 
9.5. 7 
97. 5 
98.4 
98. 9 
99.3 
99.9 

63.4 
9.8 

8.5. i 
9% 7 
Mi. 9 
9% 3 
!I% 0 
MI. 4 

1IlO. 0 
w. 6 

14.0 

8.5. , 
!I:<. i 
!Hi. 9 
9% 3 
!l!L 0 
!l!l. 4 

Ill!). 0 
!l!l. F, 

61. 5 4.4% 
1.05% 10-4  

4. 5!1% 
4. 0 7 l i  
3 .  571 
3 .  l!i5 

6.023 10.8 
6. 20.5 

4.472 
5. x i 5  

3. 7.w 

""""" 

3;. 2 44. 1 44.3 
5!l. 2 !E. 0 !i!i. 0 
i l .  li 
i 4 .  X 

ii. X 
H4. 7 U4.8 

ii. 9 

KI. 4 
x!;. h 

P!l. 0 X!I. 1 

xc;. i 113. , 
!I-?. 0 
!I:{. 9 

!l!l. :i !l5. 1 
! I t i  5 

!I.;, 3 
!l! l .  2 !l!l. 4 

n. o a. A 14. 0 

!ll. 2 

3.691 10-r 
4.416 
4.149 
3. f i 1  

. -. - -. . - 
3.122 
3.588 
3.3x5 
3. 122 
2. XIU 
2. 8i9 
2.448 

I. 0% 10-4 1.028 10-4  
2.191 
2.480 
2.374 
2.191 
2.012 
1.85; 
1.72; 

3. Ih2 2. X 4 6  2. l111!1 
2. 7Iti 2. 5!l!i 1 . W 3  
2. :<;I5 2. :i!G I .  Ii<,V2 
1;. !;I;!) 1O-s 1. 5>!l I .  I:,> 

3. 213 
2. ;!I5 
2.434 
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